Pure Stationary States of non-Hamiltonian and Dissipative Quantum Systems
نویسنده
چکیده
Using Liouville space and superoperator formalism we consider pure stationary states of open and dissipative quantum systems. We discuss stationary states of open quantum systems, which coincide with stationary states of closed quantum systems. Open quantum systems with pure stationary states of linear oscillator are suggested. We consider stationary states for the Lindblad equation. We discuss bifurcations of pure stationary states for open quantum systems which are quantum analogs of classical dynamical bifurcations.
منابع مشابه
Stationary states of dissipative quantum systems
In this Letter we consider stationary states of dissipative quantum systems. We discuss stationary states of dissipative quantum systems, which coincide with stationary states of Hamiltonian quantum systems. Dissipative quantum systems with pure stationary states of linear harmonic oscillator are suggested. We discuss bifurcations of stationary states for dissipative quantum systems which are q...
متن کاملPure stationary states of open quantum systems.
Using Liouville space and superoperator formalism we consider pure stationary states of open and dissipative quantum systems. We discuss stationary states of open quantum systems, which coincide with stationary states of closed quantum systems. Open quantum systems with pure stationary states of linear oscillator are suggested. We consider stationary states for the Lindblad equation. We discuss...
متن کاملStationary solutions of Liouville equations for non-Hamiltonian systems
We consider the class of non-Hamiltonian and dissipative statistical systems with distributions that are determined by the Hamiltonian. The distributions are derived analytically as stationary solutions of the Liouville equation for non-Hamiltonian systems. The class of non-Hamiltonian systems can be described by a non-holonomic (non-integrable) constraint: the velocity of the elementary phase ...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملاتلاف در مدارهای الکتریکی کوانتومی مزوسکوپی RLC
The quantum theory for a mesoscopic electric circuit with charge discreteness is investigated. Taking the Caldirola-Kanai Hamiltonian in studding quantum mechanics of dissipative systems, we obtain the persistent current and the energy spectrum of a damped quantum LC-design mesoscopic circuit under the influence of a time-dependent external field.
متن کامل